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Human Substantia Nigra 
Neurons Encode Unexpected 
Financial Rewards 
Kareem A. Zaghloul,1* Justin A. Blanco,2 Christoph T. Weidemann,3 Kathryn McGill,1 
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The brain’s sensitivity to unexpected outcomes plays a fundamental role in an organism’s ability 
to adapt and learn new behaviors. Emerging research suggests that midbrain dopaminergic 
neurons encode these unexpected outcomes. We used microelectrode recordings during deep brain 
stimulation surgery to study neuronal activity in the human substantia nigra (SN) while patients 
with Parkinson’s disease engaged in a probabilistic learning task motivated by virtual financial 
rewards. Based on a model of the participants’ expected reward, we divided trial outcomes into 
expected and unexpected gains and losses. SN neurons exhibited significantly higher firing rates 
after unexpected gains than unexpected losses. No such differences were observed after 
expected gains and losses. This result provides critical support for the hypothesized role of the 
SN in human reinforcement learning. 

Theories of conditioning and reinforce
ment learning postulate that unexpected 
rewards play an important role in allow

ing an organism to adapt and learn new behav
iors (1, 2). Research on nonhuman primates 
suggests that midbrain dopaminergic neurons 
projecting from the ventral tegmental area and 
the pars compacta region of the SN encode 
unexpected reward signals that drive learning 
(3–6). These dopaminergic neurons are phasi-

Fig. 1. (A) Intraoperative plan for DBS 
surgery with targeting of the STN. Mi
croelectrodes are advanced along a 
tract through the anterior thalamic 
nuclei (Th), zona incerta (ZI), STN, and 
into the SN to record neural activity. 
Each anatomical region is identified 
by surgical navigation maps overlayed 
with a standard brain atlas (top) and 
by its unique firing pattern and micro-
electrode position (bottom). Depth mea
surements on the right of the screen 
begin 15 mm above the pre-operatively 
identified target, the inferior border of 
STN. In this example, the microelectrode 
tip lays 0.19 mm below the target. A, 
anterior; P, posterior. (B) Probability 
learning task. Participants are presented 
with two decks of cards on a computer 
screen. They are instructed to repeatedly 
draw cards from either deck to deter
mine which deck yields the higher 

cally activated in response to unexpected rewards 
and depressed after the unexpected omission of 
reward (7–9), and they are major inputs to a 
larger basal ganglia circuit that has been im
plicated in reinforcement learning across species 
(10–15). 

The response of these neurons to rewards 
has not been directly measured in humans. We 
recorded neuronal activity in human SN while 
patients undergoing deep brain stimulation (DBS) 

surgery for Parkinson’s disease performed a prob
ability learning task. Patients with Parkinson’s 
disease show impaired learning from positive and 
negative feedback in cognitive tasks (16–18), 
probably because of the degenerative nature of 
their disease and the decreased number of dopa
minergic neurons capable of mounting phasic 
changes in activity in response to reward signals 
(17–19). We sought to capture remaining viable 
dopaminergic SN cells in our patients and de
termine whether they exhibit responses modu
lated by reward expectation. 

We used microelectrode recordings to measure 
intraoperative activity of SN in 10 Parkinson’s 
patients (6 men, 4 women, mean age of 61 years) 
undergoing DBS surgery of the subthalamic nu
cleus (STN) while they engaged in a probabil
ity learning task. We rewarded participants in 
the task with virtual financial gains to motivate 
learning. We identified SN by anatomic loca
tion and its unique firing pattern (Fig. 1A) (20). 
The learning task involved choosing between a 
red and a blue deck of cards presented on a com
puter screen (Fig. 1B). We informed partici
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reward probability. Participants are given up to four seconds for each draw. After each draw, positive or negative feedback is presented for two seconds. Decks 
are then immediately presented on the screen for the next choice. 
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pants that one of the two decks carried a higher 
probability of yielding a financial reward than 
the other. Participants were instructed to repeat
edly draw cards from either deck to determine 
which yields a higher return (high reward rate 
65%, low reward rate 35%) (20). If the draw of 
a card yielded a reward, a stack of gold coins 
was displayed along with an audible ring of a 
cash register and a counter showing accumu
lated virtual earnings. If the draw did not yield 
a reward or if no choice was made, the screen 
turned blank and participants heard a buzz. 
Participants completed 91.5 T 13.3 (mean T 
SD) trials during the 5-min experiment. 

We examined learning rates for the experi
ment (Fig. 2A) (20). Once a participant learns 
which deck has the higher payoff probability, he 
or she should preferentially choose that deck. 
On average, the rate with which participants chose 
the higher-probability deck improved from 52.5 T 

4.9% (mean T SEM) to 70.0 T 4.4% over the 
course of the experiment. 

We sought to determine when observed feed
back differed from expected feedback. In pre
vious quantitative models of retention, memory 
performance falls off approximately as a power 
function of the retention interval, decaying rap
idly in the short term and slowly in the long 
term (21, 22). Such a functional relation weighs 
recent experiences more heavily in determining 
the expected probability of a reward. Here, we 
use a power function to define the expected re
ward from a given deck as a function of reward 
history. Choosing a particular deck, d, on the  nth 
trial will yield an expected reward, Ed[n], de
fined as 

n−1 

Ed ½n] ¼ 0:5 þ 0:5∑Rd ½n − 1]ait n ¼ 2, … N 
i¼1 

(1) 

Fig. 2. (A) Learning rates are quantified by dividing the total number of trials (draws from the decks) into 
10 equally sized blocks and determining how often participants correctly chose the (objectively) better 
deck during that block. Trace represents mean learning rate across all participants. Error bars represent 
SEM. (B) Expected reward associated with one deck in a single experiment. For each trial, we show the 
expected reward computed for the left deck, El[n] (blue line) (Eq. 1). The outcome of each trial when this 
deck was selected is shown as a circle. Circles having value 1 represent positive outcomes, whereas circles 
having value 0 represent negative outcomes. Black circles denote expected outcomes, and red circles 
denote unexpected outcomes. We base our analysis on unexpected outcomes. (C) Mean waveforms of 
three unique spike clusters from one participant are shown in black, with SD colored for each cluster. 
Scale bar, 10 mV and 0.5 msec. (D) For each identified cluster, we calculated the average time from the 
beginning of the spike waveform to its return to baseline (a) and the average time between the two 
positive peaks of the waveform (b). We restricted our analysis to those clusters that had average baseline 
widths greater than 2 msec and peak-to-peak widths greater than 0.8 msec. (E) Mean  (n = 4703) waveform 
of spikes from a single cell from one participant is shown in black with SD in gray. (Inset) Example waveform. 
Inset scale  bar,  1 mV and  1 msec.  

for that deck. Rd[n] is defined as the feedback of 
the nth trial (total number of trials = N) for  deck  
d and has a value of 1 for positive feedback, –1 
for negative feedback, and 0 for trials when deck 
d was not selected. Expectation is thus computed 
as a weighted sum of previous outcomes, where 
the weights fall off with the power function de
termined by t. We set  a such that the weights of 
the power function approximate one over infinite 
trials for a given t. This ensures an unbiased es
timate of the effect of prior outcomes on expecta
tion and limits expectation to the range between 
zero and one. We fit Eq. 1 to the sequence of 
choices and rewards observed in each experimen
tal session to determine the best-fitting t for 
every participant [t = 1.68  T 0.32 (mean T 
SEM)] (20). Based on the best fitting t values 
in this model, participants selected the deck 
with the higher expected reward on 74.9 T 3.1% 
of the trials. We used this model of expected 
reward to classify the feedback associated with 
each trial into one of four categories: (i) unex
pected gains, (ii) unexpected losses, (iii) ex
pected gains, and (iv) expected losses (23). The 
expected reward associated with one deck for 
a single experiment from a single participant is 
shown in Fig. 2B as a function of trial number n. 

We extracted and sorted single-unit activity 
captured from SN microelectrode recordings to 
find 67 uniquely identified spike clusters (3.94 T 
0.6 clusters per recording) (Fig. 2C). To restrict 
our analysis to dopaminergic cells, we applied 
to each cluster stringent criteria pertaining to 
firing rate, spike morphology, and response to 
feedback, derived from previous studies (Fig. 
2D) (20, 24, 25). Ultimately, we retained 15 pu
tatively dopaminergic spike clusters, hereafter re
ferred to as cells, for analysis [0.88 T 0.21 (mean T 
SEM) cells and 21.4 T 6.5% of total spikes per 
recording; 10 microelectrode recordings contrib
uted to this subset]. Average recorded waveforms 
from one cell and an example of an individual 
waveform are shown in Fig. 2E. 

Representative spike activity recorded from 
a single SN cell in a single participant is shown 
in Fig. 3. We quantified the differences in spike 
activity during 225-msec non-overlapping inter
vals (20), focusing our analyses on the interval 
between 150 and 375 msec after the onset of feed
back. Preliminary analyses demonstrated that 
this interval was particularly responsive (20), and 
this interval is consistent with response latencies 
shown in animal studies (6, 7). Raw spike count 
increased in response to positive feedback and 
decreased in response to negative feedback dur
ing this interval [F1,110 = 4.6, mean squared error 
(MSE) = 1.1, P = 0.04]  (Fig. 3A). Fig. 3B shows  
spike activity during trials associated with unex
pected gains and losses, recorded from the same 
SN cell. The difference in activity between re
sponses to unexpected gains and losses during 
this interval was statistically significant [F1,57 = 
6.9, MSE = 1.8, P = 0.01] and notably clearer 
than the difference between positive and negative 
feedback. 
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Fig. 3. (A) Spike raster for a single ex
periment from one participant. Indi
vidual spike activity recorded from SN 
for trials during positive (blue) and 
negative (black) feedback is shown for 
each trial as a function of time. Below 
each spike raster is the average z-scored 
continuous-time firing rate (continuous 
trace) and histogram (bars, 75-msec in
tervals). The red vertical line indicates 
feedback onset. (B) Individual spike ac
tivity, recorded from the same cell as 
shown in Fig. 3A,  for trials in response  
to unexpected gains (blue) and losses 
(black) is shown for each trial as a func
tion of time. 

To determine how SN neurons encode be
havioral feedback across participants, we pooled 
results for all cells meeting our inclusion crite
ria. We compared continuous-time firing rates 
and spike histograms for each SN cell to its base
line spiking activity to generate average z-scored 
continuous-time firing rates and histograms for 
each cell (Fig. 3) (20). We compared neural re
sponses to unexpected and expected positive 
and negative feedback using a three-way anal
ysis of variance for the interval between 150 and 
375 msec after feedback onset (20). We found a 
significant difference between responses to posi
tive and negative feedback in z-scored firing rate 
[F1,14 = 9.3, MSE  = 29,  P = 0.0082] and spike 
counts [F1,14 = 16, MSE = 16, P < 0.005]. In 
addition, we found that this main effect of feed
back was modulated by a significant interaction 
with expectation [F1,14 = 11.3, MSE = 26, P < 
0.005] for continuous-time firing rate and [F1,14 = 
15.0, MSE = 17, P < 0.005] for spike count. The 
other post-feedback intervals (20) exhibited no 
significant differences between responses to posi
tive and negative feedback. In addition, we found 
no significant change in activity in response to 
deck presentation itself [supporting online ma
terial (SOM) text]. 

To further investigate the strong modulatory 
effect of expectation, we examined the pooled 

activity across participants in response to unex
pected gains and losses only. During the same 
post-feedback interval (gray shaded region, Fig. 
4A) (20), spike rates in response to unexpected 
gains were significantly greater than spike rates 
in response to unexpected losses [F1,14 = 16.5, 
MSE = 49, P < 0.001] (Fig. 4A). Similarly, 
z-scored spike counts were also significantly 
greater in response to unexpected gains than to 
unexpected losses [F1,14 = 18.2, MSE = 24, P < 
0.001] (Fig. 4B). This difference in spike activ
ity was driven by a statistically significant re
sponse to unexpected gains greater than baseline 
activity (SOM text). 

We confirmed that this difference in aggre
gated spike activity was consistently observed in 
individual cells by examining the relative differ
ences in spike activity in response to unexpected 
gains and losses for each cell. During this inter
val, significantly more cells [14 out of 15 cells; 
c2(1) = 11.27, P < 0.001] exhibited higher nor
malized spike rates in response to unexpected 
gains than to unexpected losses [mean difference 
of 0.67 T 0.14 (mean T SEM) z-scored spikes per 
second]. 

To confirm that human SN activity is pri
marily responsible for differentiating only be
tween unexpected gains and losses, we examined 
differences in spiking activity between expected 

gains and losses. In the same 225-msec post-
feedback interval, the difference in spike rates 
and normalized spike counts between expected 
gains and losses did not approach signif
icance [F1,14 < 1, n.s.] (Fig. 4C). Similarly, 
the remaining intervals exhibited no signifi
cant differences in spike rate or normalized 
spike count in response to expected gains and 
losses. 

The computation of how outcomes differ 
from expectation, often referred to as prediction 
error (2), is a central component of models of 
reinforcement learning and thought to be en
coded by the activity of dopaminergic neurons 
(5–7, 15, 26). We examined the correlation be
tween spike activity and changes in expected re
ward as determined by Eq. 1 under the assumption 
that this change can be used as a surrogate for 
prediction error. We defined prediction error 
here as the trial-to-trial adjustment each partici
pant makes to the expected reward for each 
deck as determined by our model of expecta
tion. Mean spike rates in the same post-feedback 
interval during trials associated with large posi
tive prediction errors were larger than spike rates 
associated with small positive prediction errors, 
but this difference was only marginally signifi
cant [F1,14 = 3.2, MSE  = 8,  P = 0.09] (20). As 
trial-to-trial differences in expected reward in
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Fig. 4. (A) Average  z-scored spike rate for unexpected gains (blue trace) compared with unexpected 
losses (black trace). The red line indicates feedback onset. The gray shaded region indicates the 225-msec 
interval between 150 and 375 msec after feedback onset. Traces represent average activity from 15 
SN cells recorded from 10 participants. (B) Average z-scored spike histograms for unexpected gains 
(blue bars) compared to unexpected losses (black bars). The red vertical line indicates feedback 
onset. Histograms represent average z-scored spike counts from the same 15 SN cells. (C) Average 
z-scored spike rate for expected gains (blue trace) did not differ significantly from expected losses 
(black trace) for any interval. The red line indicates feedback onset. (D) For every participant, the 
median positive and negative trial-to-trial change in expected reward, as determined by Eq. 1, is 
used to classify prediction error into large and small positive and negative differences. Mean z-scored 
spike rate, captured between 150 and 375 msec after feedback onset for all cells, is shown for each 
level of prediction error. Error bars represent SEM. 

creased, there was a general increase in spike ac
tivity, but this trend was also only marginally 
significant (Fig. 4D) (20). 

Our results show that differences in human 
SN responses to positive and negative feed
back are mainly driven by unexpected outcomes, 
with no significant differences in neural activity 
for outcomes that are anticipated according to 
our model. By responding to unexpected fi
nancial rewards, these putatively dopaminergic 
cells encode information that probably helps par
ticipants maximize reward in the probabilistic 
learning task. 

Our results address the important question 
of whether extrapolating findings about the re
ward properties of dopaminergic SN neurons from 
nonhuman primates to humans is reasonable 
(27). Whereas the role of midbrain dopaminer
gic neurons in reward learning has been studied 
extensively in animals (4–8, 15, 26), the evidence 
presented here represents direct measurement of 
SN neurons in humans who were engaged in a 
probabilistic learning task. Our findings should 
serve as a point of validation for animal models 
of reward learning. 

The reward for choosing the correct deck 
in our study was a perceptual stimulus designed 
to evoke a cognitive representation of finan
cial reward. Primate studies, which often rely 
on highly salient first-order reward stimuli 

such as food and water, have demonstrated 
that dopaminergic neurons are also capable 
of responding to second-order associations (28), 
which are items that can be used to directly 
satisfy first-order needs. Because no monetary 
compensation was directly provided, our ab
stract rewards (i.e., images of second-order re
wards) may be considered third-order. That the 
modest third-order rewards used here elicited a 
significant dopaminergic response, when they 
were unexpected, suggests that SN activity may 
play a more widespread role in reinforcement 
learning than was previously thought. 

Our findings suggest that neurons in the 
human SN play a central role in reward-based 
learning, modulating learning based on the dis
crepancy between the expected and the realized 
outcome (1, 2). These findings are consistent 
with the hypothesized role of the basal ganglia, 
including the SN, in addiction and other dis
orders involving reward-seeking behavior (29). 
More importantly, these findings are con
sistent with models of reinforcement learning 
involving the basal ganglia, and they suggest 
a neural mechanism underlying reward learn
ing in humans. 
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CORRECTIONS & CLARIFICATIONS 

ERRATUM Post date 24 July 2009 

Reports: “Human substantia nigra neurons encode unexpected financial rewards” by K. A. 

Zaghloul et al. (13 March, p. 1496). Equation 1 in this paper was incorrect.  The correct 

equation is as follows: 
 . 
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