Neuroscience at HIH Home
National Institutes of Health - Neuroscience at HIH Link to NIH
Link to About Us
Link to Faculty
Link to Areas of Research
Link to Seminars
Link to Interest Groups
Link to Post-doctoral Openings
Link to Home

Robert H. Wurtz, Ph.D., Senior Investigator

Dr. Wurtz received his A.B. from Oberlin College and his Ph.D. from the University of Michigan where he worked in the laboratory of James Olds on intra-cranial self-stimulation. He did postdoctoral research at the Department of Physiology, Washington University, on slow potential changes in cerebral cortex and in NINDS NIMH on synaptic plasticity in Aplysia. In 1966 he joined the Laboratory of Neurobiology, NIMH and began studies on the visual system of awake, behaving monkeys. During this time he spent a year as a Visiting Scientist at the Physiological Laboratory at Cambridge University in England. He became the founding Chief of the Laboratory of Sensorimotor Research, NEI in 1978. Dr. Wurtz was elected to the National Academy of Sciences in 1988, the Institute of Medicine of the National Academy of Sciences in 1997, the American Academy of Arts & Sciences in 1990, and President of the Society for Neuroscience in 1990. The focus of his research is the neurobiology of vision and eye movements.
Photo of Robert  H. Wurtz, Ph.D., Senior Investigator


Research Interests:
I have concentrated my research on one of the primary functions of the brain: how it processes sensory information for perception and the initiation of movement. Experiments in my laboratory centers on the visual and oculomotor systems of the brain of awake behaving monkeys as a model for similar systems in the human brain.

One oculomotor system, the saccadic system, moves the eye rapidly from one region of the visual field to another and my laboratory has investigated the nature of the visual-motor transformations that must occur between the visual input and the eye-movement-related output. Experiments use behavioral, electrophysiological, anatomical, and theoretical approaches on the system within the brain including the superior colliculus, the cerebral cortex, and the basal ganglia. Preparation to make these eye movements has also been used to determine the regions of the brain related to visual attention and the neuronal processes that occur with shifts of attention.

Visual motion information is used to generate a second type of eye movement, smooth pursuit, and we have identified regions of visual cortex that are related to these movements. Recent work has also suggested that the visual motion resulting from our own movements is processed in a separate but adjacent region of the cerebral cortex.

Selected Recent Publications:
  • Joiner WM, Cavanaugh J, FitzGibbon EJ, Wurtz RH (2013) Corollary discharge contributes to perceived eye location in monkeys., J Neurophysiol 110(10), 2402-13. Full Text/Abstract

  • Joiner WM, Cavanaugh J, Wurtz RH (2013) Compression and suppression of shifting receptive field activity in frontal eye field neurons., J Neurosci 33(46), 18259-69. Full Text/Abstract

  • Wurtz RH (2013) Retrospective. David H. Hubel , Science 342(6158), 572. Full Text/Abstract

  • Cavanaugh J, Monosov IE, McAlonan K, Berman R, Smith MK, Cao V, Wang KH, Boyden ES, Wurtz RH (2012) Optogenetic inactivation modifies monkey visuomotor behavior., Neuron 76(5), 901-7. Full Text/Abstract

  • Cavanaugh J, Joiner WM, Wurtz RH (2012) Suppressive surrounds of receptive fields in monkey frontal eye field. , J Neurosci 32(35), 12284-93. Full Text/Abstract

  • Wurtz RH, Joiner WM, Berman RA (2011) Neuronal mechanisms for visual stability: progress and problems., Philos Trans R Soc Lond B Biol Sci 366(1564), 492-503. Full Text/Abstract

  • Berman, R.A., Wurtz, R.H. (2011) Signals Conveyed in the Pulvinar Pathway from Superior Colliculus to Cortical Area MT., J. Neurosci 31, 373-384. Full Text/Abstract

All Selected Publications

Contact Information:

Dr. Robert H. Wurtz
Laboratory of Sensorimotor Research, NEI
Building 49, Room 2A50
49 Convent Drive MSC 4435
Bethesda, MD 20892-4435

Telephone: (301) 496-7170 (office), (301) 402-0511 (fax)


Home   |   Email List   |   Search   |   Contact Us   |   Privacy Notice   |   Disclaimer   |   Accessibility
Comments or questions about the website?
Send email to